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A B S T R A C T   

Background: Alzheimer’s disease (AD) is one of the deadliest diseases in developed countries. Treatments 
following early AD detection can significantly delay institutionalisation and extend patients’ independence. 
There has been a growing focus on early AD detection using artificial intelligence. Convolutional neural networks 
(CNNs) have proven revolutionary for image-based applications and have been applied to brain scans. In recent 
years, studies have utilised two-dimensional (2D) CNNs on magnetic resonance imaging (MRI) scans for AD 
detection. To apply a 2D CNN on three-dimensional (3D) MRI volumes, each MRI scan is split into 2D image 
slices. A CNN is trained over the image slices by calculating a loss function between each subject’s label and each 
image slice’s predicted output. Although 2D CNNs can discover spatial dependencies in an image slice, they 
cannot understand the temporal dependencies among 2D image slices in a 3D MRI volume. This study aims to 
resolve this issue by modelling the sequence of MRI features produced by a CNN with deep sequence-based 
networks for AD detection. 
Method: The CNN utilised in this paper was ResNet-18 pre-trained on an ImageNet dataset. The employed 
sequence-based models were the temporal convolutional network (TCN) and different types of recurrent neural 
networks. Several deep sequence-based models and configurations were implemented and compared for AD 
detection. 
Results: Our proposed TCN model achieved the best classification performance with 91.78% accuracy, 91.56% 
sensitivity and 92% specificity. 
Conclusion: Our results show that applying sequence-based models can improve the classification accuracy of 2D 
and 3D CNNs for AD detection by up to 10%.   

1. Introduction 

The main idea behind deep learning—part of a broader family called 
machine learning—is based on neural networks inspired by data pro-
cessing nodes in biological systems; ‘deep’ refers to multiple layers in the 
networks. Not a relatively new concept, the application of deep learning 
has not been well investigated until recent advancements in graphics 
processing units (GPUs) and the development of various new algorithms 
for efficiently training deep-learning models [1]. In recent years, 
numerous studies have used deep learning for classification, regression 
and segmentation. In particular, convolutional neural networks (CNNs) 
and recurrent neural networks (RNNs) have performed outstandingly in 
image-based and sequence-based decision-making tasks, respectively. 

CNNs employ spatial information of images and extract features by 
assembling convolutional layers to create a hierarchy of features to 
make a decision [2]. Instead of using vector-based inputs, which is the 
case in typical neural networks, CNNs capture the structural information 
among neighbouring pixels. Conversely, RNNs have a memory to cap-
ture temporal dependencies in sequence-based tasks. The output for the 
most recent sequential input is calculated using the corresponding input 
data and by considering previous input data stored in hidden units. 

CNNs and RNNs can be applied to image- and vector-based time- 
series tasks, respectively. Although three-dimensional (3D) CNNs are the 
most straightforward method for a sequence of images like video-based 
applications and 3D medical images, their structure is highly complex. It 
necessitates many parameters for training; 2D CNNs can be fed by 2D or 
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3D images. A 3D image volume can be handled as a sequence of 2D 
image slices. For 3D images, 2D CNNs can capture spatial dependencies 
from images, but are incapable of understanding temporal relations in a 
sequence of images. Conversely, RNNs can be applied in time-series 
applications with their embedded memory. They can only be fed by 
numerical vectors as features, but vectorisation eliminates structural 
information in images in image-based applications. 

This paper investigates the application of deep learning in Alz-
heimer’s disease (AD) detection using magnetic resonance imaging 
(MRI). AD, the most widespread kind of dementia (about 60–80% of all 
dementia cases), is a fatal disorder that causes brain cells to die [3]. 
According to estimates, dementia affects about 50 million people 
worldwide and 459,000 Australians in 2020 [3,4]. With 15,016 deaths 
in 2019, it is currently the second-highest cause of death in Australia [5]. 
In practice, clinical checks and questionnaires are used to detect AD, but 
this is challenging given the limited current knowledge about the dis-
ease. In recent years, the exploration of novel deep models, especially for 
medical image processing, has become popular [1]. The number of 
published articles in this area of research exploded in 2017 [6]. Several 
deep models have been utilised for AD detection, using brain scans such 
as MRI. Successful classification requires distinguishing specific patterns 
in MRI scans, leading to classifying patients with AD from healthy 
normal controls (NCs). 

AD detection from neuroimaging is difficult. Various machine- 
learning methods have been explored for AD detection. However, 
mainstream machine-learning approaches are incapable of addressing 
such a complex problem, since highly discriminative features are 
required to distinguish similar brain patterns [2,7,8]. The main purpose 
of feature extraction is to establish a set of information that should 
convey the disease-related patterns for AD detection. To use 3D MRI 
scans to detect AD using deep models, input data management should be 
considered. According to the literature [6], input data management 
methods can be arranged into four categories: slice-based, patch-based, 
voxel-based and ROI-based. Slice-based structures reduce the number of 
learnable parameters by supposing that features of interest are included 
in 2D image slices. Patch-based methods can take brain AD-related 
patterns by extracting features from small 3D cubes in the brain, 
called ‘patches’. Voxel-based methods are the most direct, using voxel 
intensity values from the entire 3D brain scan. ROI (region of interest) 
methods emphasise specific AD-related segments of the brain, rather 
than the whole brain. The definition of ROIs usually requires previous 
knowledge of the abnormal regions related to AD, such as the hippo-
campus. The main challenge in ROI- and patch-based approaches is to 
select the most informative AD-related image regions or patches. 

Along with data management methods, different types of deep- 
learning models have been employed for AD detection. On top of 
them, there are CNNs [6]. 2D and 3D CNNs are usually applied to slice- 
and voxel-based methods, respectively. CNNs can efficiently capture 
disease-related patterns in brain scans. However, deep models require a 
large dataset to be trained on, but large datasets are not available for AD. 
In addition to the previously mentioned benefits of 2D CNNs over 3D 
CNNs, the former can employ the idea of transfer learning, which refers to 
transferring knowledge from one task to another. Thus, a 2D CNN model 
can be trained on an arbitrary dataset of millions of samples and 
retrained on a specific dataset of AD patients. This is possible since the 
filters associated with convolutional layers of a CNN can extract general 
features that are beneficial to many tasks. 

The main disadvantage of using 2D CNNs on 3D MRI scans (slice- 
based approaches) is that 2D CNNs are incapable of understanding 
voxels’ dependencies in MRI volumes. When converting 3D MRI scans to 
2D image slices, the loss of data will happen. That is due to the fact that 
brain regions span over 2D slices of an MRI scan. By splitting the scan, 
features related to brain regions’ sizes and shapes will be lost. The main 
disadvantage of 3D CNNs (voxel-based approaches) is that their struc-
ture is highly complex and requires many training parameters, which 
may cause overfitting. Also, they cannot benefit from transfer learning 

using datasets with millions of 2D images such as ImageNet. To address 
this issue, we propose sequence-based approaches and compare them 
with slice-based and voxel-based approaches. We investigate the possi-
bility of using a combination of image- and sequence-based models to 
detect AD. Thus, after dividing 3D MRI scans into 2D image slices, a 2D 
CNN is used to extract the features. Then, a sequence-based deep model 
is employed to find the relation between sequences of features. The 
sequence-based deep model can be a type of RNN, such as long short- 
term memory (LSTM) [9], bidirectional LSTM (BiLSTM) [10] and 
gated recurrent unit (GRU) [11]. We also design a temporal convolu-
tional network (TCN) [12] to perform feature extraction from images 
and understand temporal dependencies simultaneously. To the best of 
our knowledge, TCNs have not been employed for AD detection previ-
ously in the literature. 

Section 2 reviews recent studies on AD detection using CNNs and 
RNNs. We then explain the proposed structure of CNNs, RNNs and TCNs 
together with their fundamental mathematics. Following this, the pre-
sented models’ results are compared and discussed, and conclusions are 
drawn. 

2. Related work 

CNNs are the most common deep model utilised to detect AD [6]. 
Inspired by the brain’s visual cortex, CNNs can take 2D or 3D images as 
input data and extract features by assembling several convolutional 
layers. In contrast to typical classifiers in machine learning, CNNs 
combine feature extraction and classification in a single entity. Initially 
presented in Ref. [13], CNNs attracted great attention after their 
outstanding performance in the ImageNet Large Scale Visual Recogni-
tion Challenge (ILSVRC) [14]. CNNs, such as ResNet [15], have been 
successfully employed to classify 1000 different classes on a dataset of 
about one million images. 

CNNs are built using convolutional layers ending with a Softmax 
layer and with other layers in between, including, but not limited to, 
activation layers, batch normalisation layers, pooling layers, drop-out 
layers and fully connected layers. The key part is the convolutional 
layer, which applies filters to the input images and extracts features. 
Batch normalisation layers typically appear after convolutional layers to 
normalise the previous layer’s output on each mini-batch by deducting 
the mini-batch mean and dividing by the mini-batch standard deviation. 
A nonlinear activation function—typically ReLU—generally follows to 
enable learning of complex representations. Pooling layers down-sample 
features by calculating the local average or maximum, which reduces 
the number of learnable parameters while preserving influential fea-
tures. Drop-out layers prevent a model from overfitting by dropping 
some neurons randomly at each update of the training process, thereby 
reducing computational load and forcing neurons to act independently. 
Neurons in each fully connected layer are connected to all feature ele-
ments in their previous layer, just like traditional neural networks. In the 
end, a Softmax function presents the greatest value in the output vector 
while suppressing the rest. 

Initially, CNNs were applied to 2D images for decision-making tasks. 
However, employing 3D CNNs is also popular, since it is the most 
straightforward way to detect AD from 3D MRI scans; 3D CNN models 
were proposed based on VGGNet and ResNet in [16–20]. However, 3D 
CNN models have many learnable parameters compared with 2D CNNs 
and cannot benefit from transfer learning. Hence, the use of 2D CNNs is 
more common in this field of research. Supposing that the main features 
in 3D MRIs are preserved in 2D image slices, MRI volumetric data can be 
divided into 2D images. Generally, 2D CNNs are trained on MRI scans in 
the form of 2D image slices; and all image slices of one patient are 
classified for disease detection. In 3D medical image analysis using 2D 
CNNs, research studies employ standard planes of brain scans, such as 
the coronal plane, the sagittal plane, the axial plane or a combination of 
these. It has been shown that the discriminative AD-related features are 
covered by the coronal view of a brain scan [7,21]. 
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Among studies using 2D CNNs, several deep models were designed 
with two [7,22], three [23], five [24] or six convolutional layers [25]. 
However, pre-trained CNN models such as DenseNet-121 [21], 
VGGNet-16 [26], GoogLeNet, ResNet-18 and ResNet-152 [27], 
ResNet-18 [28], GoogLeNet and ResNet-152 [29], Inception-V3 [30], 
CaffeNet and GoogLeNet [31], LeNet and GoogLeNet [32], or 
VGGNet-16 and Inception-V4 [33,34] are also popular. These methods 
were all applied on a single view of brain scans; however, using all three 
views can offer complement features [35,36]. The main weakness of 
multi-view methods is possible ambiguities in the final decision. In 
another study, a consensus multi-view clustering model was proposed to 
detect AD. The authors created 12 views from an initial MRI dataset 
using various feature extraction methods, such as the Gabor filter. After 
pre-processing, the processed multi-view data were fed into a matrix 
factorisation model for classification [37]. 

Compared with CNNs, RNNs are used less often for AD detection. 
RNNs are specially designed for temporal tasks, such as video or text 
processing. Although image-based tasks contain spatial rather than 
sequential information, a 3D brain scan can be managed as a sequence of 
2D image slices. A typical model in corresponding studies is to employ a 
neural network to extract features and an RNN to address the features. 
RNNs can be beneficial for AD detection in two types of studies: cross- 
sectional and longitudinal. In cross-sectional studies, RNNs are applied 
to evaluate a subject at a specific time. General cross-sectional methods 
extract features from image slices of a brain scan and find their rela-
tionship using RNNs [8,38,39]. In longitudinal studies, RNNs follow 
subjects over time to evaluate AD progression. General longitudinal 
methods extract features from brain scans captured over time and un-
derstand the disease progression among them using RNNs [40–42]. 
RNNs are not as deep as deep multilayer neural networks or CNNs in 
terms of the number of layers. They have difficulties memorising 
long-term sequences and require large datasets for training [2]. Fortu-
nately, more complex structures, such as LSTM or GRU, help prevent 
memorising problems [38,40]. Currently, RNNs are utilised for 
sequence-to-one and sequence-to-sequence decision-making tasks. In 
sequence-to-sequence tasks, a decision is made in each time step; in 
contrast, in sequence-to-one tasks, a single decision is made on a pre-
defined number of time steps. For example, a short video can have one 
label or one label per frame for a classification task. 

Presently, in the field of deep learning, sequence-based tasks are 
commonly handled by RNN structures. Recently, it has been shown that 
CNNs can be applied to general sequence modelling tasks. Similar to 
recurrent networks, CNNs can operate on fixed- or variable-length input 
sequences and be employed to model sequence-to-sequence and 
sequence-to-one tasks. The original TCN proposed by Bai et al. [12] was 
evaluated across a wide range of standard tasks (e.g. character-level and 
word-level language modelling) that are usually employed to bench-
mark recurrent networks. It was shown that its functionality could 
match or even outperform RNNs. Better parallelism and control of the 
network’s memory in the training process are other benefits of TCNs. 
Also, in contrast with previous AD detection approaches using RNNs, a 
TCN model can be employed for feature extraction and classification, 
simultaneously. The other applications of TCNs include, but are not 
limited to, generation of financial time series, human activity and 
gesture recognition, speech separation, enhancement, and recognition, 
image captioning, soccer ball detection and tracking and traffic flow 
forecasting [12]. Thus far, TCNs have not been applied to medical im-
ages for any purpose. 

3. The proposed method 

Training a CNN model consists of forward/backward steps to 
calculate the loss function between the ground truth labels and predicted 
output. Then, a penalisation term is applied with chain rules to update 
learnable parameters. While 3D CNNs can capture the full spatial in-
formation from 3D MRIs, they are challenging to train and incapable of 

benefiting from transfer learning. In transfer learning, learnable pa-
rameters (weight and bias) can be initialised by training deep models on 
other tasks with millions of images, related or unrelated. These pa-
rameters can serve in an AD detection system since they can extract 
general features from images. In this study, we used ImageNet, a dataset 
of 1000 object categories [14], to initialise our 2D CNN model. Training 
a 2D CNN is quite simple, but they are incapable of capturing the spatial 
information of 3D MRIs because of the absence of the third dimension in 
convolving filters [43]. 

To use transfer learning and understand 3D patterns in MRI scans, we 
extracted features from MRI image slices with a pre-trained 2D CNN and 
fed the sequence of the extracted features to an RNN. An overview of 
data processing involving these models can be found in Fig. 1. The RNN 
is responsible for understanding the relationship between the sequence 
of extracted features corresponding to MRI image slices. However, the 
feature extraction step in the CNN is independent of the classification 
step in the RNN. To avoid this, a TCN model was proposed. TCNs can 
perform feature extraction and classification in sequence-based tasks 
simultaneously. Without using CNNs, they can extract features from 2D 
image slices and find the relationship between a series of 2D image 
slices. Similar to RNNs, TCNs can be applied on fixed- or variable-length 
input sequences. Further, TCNs can be utilised to model sequence-to-one 
or sequence-to-sequence tasks. 

In this section, we discuss data collection and processing. Then we 
explain our 2D CNN model to demonstrate insights in feature extraction. 
Finally, we discuss the proposed RNN and TCN models. 

3.1. Data collection and processing 

The ADNI2 study, which is the most commonly used dataset in this 
field [6], supplied the dataset utilised in this paper. It has been used in 
about 90% of studies by itself or in combination with other datasets. The 
ADNI study’s main goal is to test the effectiveness of MRI and other 
biomarkers in measuring the progress of AD. Baseline or screening MRI 
scans of 225 subjects for each class (AD and NC) were employed in our 
study. Subjects’ identification numbers and data statistics are available 
in Appendix 1, while the demographic details are also presented in 
Table 1; the dataset itself is available online upon request. The reason for 
selecting the same number of samples for each class was to prevent 
prediction bias because of an imbalanced dataset. It is possible to access 
many MRI scans from healthy people and include them in our dataset to 
increase the dataset size. However, the number of subjects with AD is 
limited in medical datasets. Therefore, to avoid class imbalance and 
subsequent prediction bias to one of the classes—NC in this case—the 
same number of MRI scans was selected for each class. 

Overfitting is a challenging topic in deep learning that may occur 
because of issues such as a low number of subjects and a large number of 
learnable parameters. There are numerous ways to minimise overfitting, 
as reported in the literature [44,45]. The first solution is to use data 
augmentation to increase the dataset size by slightly modifying the 
available data. Medical datasets have few subjects, and obtaining new 
data is difficult; thus, data augmentation is commonly used to classify 
medical data. Another workaround is to use transfer learning, a 
powerful tool to enable training a large network without overfitting. 
Transfer learning allowed us to perform feature extraction using 
knowledge from another dataset with more samples. Regarding the large 
number of learnable parameters, various CNN models—from Lenet-5 to 
ResNet-101—with a different number of learnable parameters were 
utilised to prevent overfitting. More details on the employed CNN 
models, their structures and training options to avoid overfitting are 
provided in Sections 3.2 and 4. 

The two most common image pre-processing steps in the literature 
were adopted: intensity normalisation and registration [6]. Intensity 
normalisation involves mapping the intensities of all pixels or voxels 
onto a reference scale. In our experiments, for each pixel/voxel, we 
subtracted the mean and divided by the standard deviation of the whole 
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input data. Therefore, voxel intensities of all MRI scans were mapped to 
be zero-centred. In the process of training a model, there will be 
multiplying of (weights) and adding to (biases) these initial inputs, 
leading to activations that backpropagate with the gradients to train the 
model. In this process, each feature must have a similar range so that the 
gradients do not go out of control. 

Registration is the process of spatially aligning image scans to a 
reference anatomical space. It is essential due to the complexity of brain 
structures and the differences between different subjects’ brains. Image 
registration aids in standardising the MRI scans regarding a common 
fixed-size template. This alignment makes it possible to compare the 
voxel intensities of brain scans from different subjects, ensuring that a 
certain voxel in one scan has the same anatomical position as in the 
brain of another scan. To standardise MRIs to a standard pattern, they 

were spatially adjusted to the Montreal Neurological Institute (MNI) 
space [46] using the SPM12 toolbox [47]. 

After adjusting to the MNI space, each MRI scan’s dimension was 
79 × 95 × 79 (in voxels). As discussed previously, the coronal plane is 
reported to contain the most notable AD-related parts of the brain. 
Further, coronal sequences have a longer length, which is beneficial in 
sequence-based deep models. From 95 coronal slices of an MRI with the 
size of 79 × 79 (in pixels), 23 slices were marked manually and dis-
carded from the beginning and the end of the slices, as they mostly 
contained the skull or background. Since every MRI scan was registered 
to the MNI template, all the subjects start with the same brain regions 
that include brain tissues. As our 2D CNN model was pre-trained on the 
ImageNet dataset, which takes RGB (Red-Green-Blue) colour images as 
the input, RGB images were required. In this case, 72 remaining gray-
scale images were formed into 24 RGB coronal images by stacking three 
adjacent slices as RGB colour channels. Then, each MRI was resized to 
match the input layer of our CNN model using bilinear interpolation. 

3.2. The CNN model 

The performance of deep CNNs might be degraded because of the 
vanishing gradient issue. In the backpropagation training process, the 
gradient might infinitely decrease when it is backpropagated to previous 
layers. In this paper, we utilised the well-known ResNet-18 model [15], 
which presents the idea of ‘shortcut connections’ that skip some layers to 

Fig. 1. A block diagram of our AD detection system involving the CNN and RNN models.  

Table 1 
Demographic details of our ADNI dataset.   

AD NC 

Male 117 109 
Female 108 116 
Agea 75.52 ± 7.94 73.88 ± 6.63 
Total 225 225  

a (Mean ± Standard Variation).  

Fig. 2. The ResNet-18 implemented in this study.  
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avoid the vanishing gradient problem. Fig. 2 shows the implemented 
structure of ResNet-18. The skipped routes are shown in Block1 and 
Block2 of Fig. 2. This model has a depth of 18–71 layers, including 20 
convolutional layers and one fully connected layer and about 12 million 
learnable parameters, with image input sizes of 224 × 224 (in pixels). 
The network depth is defined as the largest number of sequential fully 
connected layers and convolutional layers on the route from the input 

layer to the Softmax layer. Coronal images of size 79 × 79 were resized 
to 224 × 224 with the bilinear interpolation method, then fed to the 
ResNet-18 model. The corresponding features of each coronal image 
were extracted before the fully connected layer. A vector with 512 ele-
ments was produced with the extracted features. Considering all coronal 
images of an MRI scan, finally, a sequence of 512-element vectors with a 
length of 24 was obtained. ResNet-18 has already performed well on the 

Fig. 3. (a) A general RNN structure, (b) an LSTM cell unit, (c) a GRU cell unit, (d) a chain of LSTM cells, (e) a chain of GRU cells, (f) the LSTM or GRU model 
implemented in this study, (g) the BiLSTM model implemented in this study. 
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ImageNet dataset, with 69.49% accuracy on the validation set.3 Since it 
can extract general features from images, it was employed for our MRI 
dataset. 

Some techniques are embedded into CNNs to avoid overfitting, such 
as max-pooling and drop-out layers. Max-pooling reduces the number of 
parameters, and subsequently, the dimension of extracted features to 
control overfitting and guides the invariance to scale, shift and rotation 
[48]. Drop-out layers randomly drop neurons at each update of the 
training phase and force neurons to act independently [26]. Another 
idea is to discard fully connected layers applied to networks such as 
SqueezeNet. Removing them results in a smaller number of learnable 
parameters compared to VGGNet and reduces overfitting. The over-
fitting issue is worst when applying 3D CNNs. For MRI analysis, the most 
straightforward method is to take the entire MRI volume as the input 
and build a deep 3D CNN. However, this requires training a large 
number of parameters, which simply causes overfitting [49]. In addition 
to these CNN-related structures, L1 and L2 regularisation have proven to 
prevent overfitting in the literature. 

3.3. The RNN model 

RNNs are a type of neural network with internal memory to model 
temporal dependencies in sequence-based tasks, such as video or text 
applications. In RNNs, past information is indirectly collected in hidden 
units, called state vectors. The output for the current input depends on 
the current input data and all previous input data using these state 
vectors. In the training process, hidden state vectors are updated 
accordingly. In Fig. 3(a), considering the sequence of extracted features 
from ResNet-18 to be X1,X2,X3,…,X24, the RNN takes X1 from the input 
sequence and outputs h1, which together with X2, is the input for the 
next step. Similarly, h2 with X3 are the input for the next step. This 
process continues up to X24, which leads to remembering the context 
while training. The output of this model at slice t can be formulated as 
Yt = Whyht, where ht = tanh(Whhht− 1 + WxhXt). In these equations, 
Whh, Wxh, and Why refer to weights in the previous hidden state, weights 
at the current input state and weights at the output state, respectively. 
The activation function tanh introduces nonlinearity to the model. 

3.3.1. The LSTM model 
LSTM networks are revised versions of RNNs. By resolving the van-

ishing gradient problem of RNNs [2], LSTM networks can more easily 
recall past data [40]. LSTM is suitable for sequence-based tasks, either 
fixed or variable length. They have a more complex structure than 
traditional RNNs. LSTM models contain three gate units (input, output 
and forget gates) and a memory cell unit. The cell unit remembers values 
over a sequence, and the three gates control the flow of information into 
and out of the cell. Gates are composed of nonlinear functions and a 
pointwise multiplication operation. 

The input gate determines which values from the current input and 
the previous state must be utilised to modify the memory cell unit. A 
sigmoid function allows components to go through the model. A tanh 
function emphasises the passed values with weights according to their 
level of importance. In contrast to the input gate, the forget gate de-
termines which information is discarded from memory by a sigmoid 
function. The output gate controls the input and memory of the LSTM 
unit to calculate the output by a sigmoid function. To formulate the gates 
and considering the input weights W, the recurrent weights R and the 
bias term b, we have: 

Input gate it = sigmoid(WiXt +Riht− 1 + bi)Θ tanh
(
WgXt +Rght− 1 + bg

)

(1)  

Forget gate ft = sigmoid
(
WgXt + Rght− 1 + bg

)
(2)  

Output gate ot = sigmoid(WoXt + Roht− 1 + bo) (3)  

at time step t, where Θ denotes the element-wise multiplication of 
vectors. The hidden state is defined by ht = ot Θ tanh(ct) and the cell 
state at step t is given by ct = ft Θ ct− 1 + it. An LSTM cell unit is shown in 
Fig. 3(b). A chain of LSTM cells is shown in Fig. 3(d) to illustrate their 
connection. 

In our case study, an LSTM model with six layers was implemented, 
as shown in Fig. 3(f). The first layer was the input layer, which captured 
24 vectors of features, each with a size of 512. Then, two LSTM layers 
were placed, each with 24 LSTM nodes; 24 was selected as the total so 
that the model could remember all of the sequence to make the decision. 
The first LSTM layer took the entire sequence of features as input to 
output a complete sequence. Similarly, the second LSTM layer captured 
the entire sequence from the previous layer as input to output the last 
step of the sequence. After concatenation, a fully connected layer was 
placed with two nodes because we have two classes in our classification 
task. Finally, a Softmax and classification layer determined the output of 
the entire LSTM model. 

3.3.2. The BiLSTM model 
LSTM models are unidirectional, meaning that the current output 

depends only on the current and previous inputs. A unidirectional model 
is required in real-time text-based or video-based applications since 
there is access only to the current and previous inputs. However, we had 
access to both past and future sequences of features extracted from our 
CNN model. This allowed us to use bidirectional sequence-based models. 
Use of BiLSTM will run inputs in two directions: from past to future 
(forwards) and from future to past (backwards). This way, the infor-
mation will be preserved from both past and future. BiLSTM is simply a 
combination of two independent LSTMs, in which one receives the input 
in the forwards order and the other in the backwards order. The outputs 
of the two networks are usually concatenated at each time step to create 
the model output. In this study and for our BiLSTM network, a similar 
configuration to the LSTM network was used, as shown in Fig. 3(g). The 
main difference between the two models is that the BiLSTM network has 
twice the number of components—equal to 48—after the BiLSTM layer 
because of the concatenation. 

3.3.3. The GRU model 
The GRU is a new type of RNN that is similar to an LSTM model. By 

removing the cell state and using the hidden state to transfer informa-
tion, it has a simpler structure than the LSTM. A GRU only has two gates: 
an update and a reset gate. Similar to the input and forget gates of an 
LSTM, the update gate determines which new information to keep and 
which information to discard. The reset gate decides how much past 
information to forget. To formulate the gates, and considering the input 
weights W, the recurrent weights R and the bias term b, we have: 

Update gate zt = sigmoid(WzXt +Rzht− 1 + bz) (4)  

Reset gate rt = sigmoid(WrXt +Rrht− 1 + br) (5)  

at time step t, where the hidden state is defined by ht = (1 − zt) Θ ht− 1 +

ztΘtanh(WhXt + rtΘ(Rhht− 1) + bh). A GRU cell unit is shown in Fig. 3(c). 
A chain of GRU cells is shown in Fig. 3(e) to illustrate their connection. 
In this study and for our GRU network, a similar configuration to the 
LSTM network was used, as shown in Fig. 3(f). 

3.4. The TCN model 

The core building blocks of a TCN are dilated causal convolutional 
layers that run over time steps of a sequence. In causal convolutions, a 
filter at time step t can only observe inputs that are no later than t; hence, 
there is no information leakage from future to past, similar to LSTM and 
GRU. To build a perspective from previous time steps, multiple con-
volutional layers are stacked on top of each other, as shown in Fig. 4(a). 
The dilation factor d in convolution layers controls the receptive field 
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size and can enable an exponentially large receptive field. The receptive 
field is a portion of sensory time steps that can activate neuronal re-
sponses. In simple causal convolutions, the receptive field grows linearly 
with every additional layer. A larger receptive field can help memorise 
long-term sequences, which leads to fewer layers and parameters in the 
TCN model. 

Generally, the dilation factor of the K-th causal convolutional layer is 
assumed to be 2K− 1 and the stride is 1. For the first layer, the receptive 
field size R1 is equal to 1 as a causal convolution layer can always 
observe its current time step. For the next layer, we have R2 = 1+

(KernelSize − 1)× 2, where KernelSize is the size of filters in the causal 
convolution layer. For the K-th causal convolutional layer, we have 
RK = RK− 1 + (KernelSize − 1)× 2K− 1, if the dilation factor increases 
exponentially by 2. If the stride is 1 and the kernel size is fixed for the 

whole model, we have RK = 1 + (KernelSize − 1) ×
∑K

k=1
2k− 1 or simply 

RK = 1 + (KernelSize − 1) × (2K − 1) for K ≥ 1. By changing the filter 
size and number of layers, the receptive field size and number of 
learnable parameters are easily adjusted for any task. 

A general TCN model consists of multiple residual blocks. A residual 
block stacks two dilated causal convolution layers together with the 
same dilation factor, followed by normalisation, ReLU activation and 
drop-out layers as shown in Fig. 4(b). The normalisation layer calculates 
the mean and variance of input data over each input channel and nor-
malises it accordingly. In contrast to the batch normalisation layer, the 
mean and standard variance would be different for each observation in 
the mini-batch. The drop-out layer drops all time steps of a certain 
channel with the probability specified by the drop-out factor. After 
stacking multiple residual blocks, a fully connected and Softmax layer 
are connected for classification. 

The input to each residual block is added to the output of the block. If 
the depth (number of channels) of the inputs and depth (number of 
filters) of the second dilated causal convolution layer differs, a 1 × 1 
convolution is applied to the inputs before adding the convolution 
outputs to match the depths. Since each residual block has two identical 
dilated causal convolutions, the receptive field size for K-th residual 
block is calculated by RK = 1+ 2× (KernelSize − 1)× (2K − 1). By 
stacking several residual blocks together, TCNs can obtain a desirable 
receptive field size; however, it likely would not precisely match the 
maximum sequence length. By increasing the number of blocks, the 
receptive field can be larger than the maximum length and padding will 
be required. Otherwise, some older histories will be sacrificed. 

We developed two approaches to our AD detection model. In 
Approach 1, the features extracted from our CNN model were used to 
train the TCN, similarly to the process used in RNN-based models. In this 

case, there was a sequence of 512-element vectors with a length of 24 for 
each subject. This way, the benefits of pre-trained CNN models could be 
utilised for feature extraction. However, the spatial relationship of pixels 
in 2D image slices may be lost after feature extraction. With KernelSize =

3, the receptive field size was 13 or 29 for two or three residual blocks, 
respectively. The feature extraction step remained independent of the 
classification step. In Approach 2, the original 72 greyscale coronal im-
ages of 79 × 79 were used directly to feed a TCN model. This way, 
feature extraction and classification were performed simultaneously, 
although filters were initialised randomly. With KernelSize = 3, the 
receptive field size was 61 or 125 for four or five residual blocks, 
respectively. In both approaches, each causal convolutional layer had 
128 filters, the drop-out factor was 5% and the fully connected layer had 
two neurons. 

4. Experimental results 

In our experiments, 300, 50 and 100 MRI scans were utilised as 
training, validation and test sets, respectively. Every set contains the 
same number of subjects from each class to avoid imbalance. Therefore, 
the test set had 50 AD subjects and 50 NC subjects. We ensured that the 
test set remained completely unobserved and no information leaked 
from the test set into the training set. The same sets were used to train, 
validate and test all approaches—slice-based, voxel-based and 
sequence-based—and models (different types of 2D/3D CNNs, RNNs and 
TCNs) to obtain fair comparisons. The MATLAB deep-learning toolbox 
was employed to train and build the networks on a computer with an 
NVIDIA V100 GPU and 96 GB RAM. 

Training a deep model requires the setting of various parameters in 
the backpropagation learning algorithm. Conventional values identified 
in a literature review [6] were applied for the backpropagation learning 
algorithm as the starting point. Further, an optimisation method 
employing Taguchi analysis was used to understand the effect of five 
parameters—the batch size, learning rate, drop-out factor, L2 regular-
isation factor and severity of data augmentation—in training deep 
models [19]. Inspired by these papers’ findings, our experiment used 
trial and error to identify the optimal parameters for each approach. Our 
conclusions on each parameter’s effect on classification performance 
indicate that a low level of data augmentation and a small mini-batch 
size negatively affect accuracy. Also, large values for the learning rate 
factor result in oscillation in classification accuracy at the end of the 
backpropagation algorithm, rather than convergence. For simplicity, 
similar training parameters, such as learning rate = 0.01, 
mini_batch size = 16, and momentum = 0.9, were selected using trial and 
error for RNN-based models. Xavier [50] and orthogonal methods [51] 
were used to initialise input weights and recurrent weights, respectively. 

Fig. 4. (a) Stacked convolutional layers in TCNs, (b) a residual block.  
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For LSTM and BiLSTM models, the forget gate bias values were ini-
tialised with one and the remaining biases with zero. For the GRU 
model, all biases were initialised with zero. Weights of the fully con-
nected layer were initialised with Xavier and biases with zeros. The 
stochastic gradient descent (SGD) optimiser was utilised for training; the 
maximum number of epochs was 50. 

For TCN models, training parameters, such as learning rate = 0.001 
and momentum = 0.9, were selected with the SGD optimiser. Weights for 
causal convolutional and fully connected layers were initialised 
randomly with Gaussian distribution. In Approach 1, we had 
mini_batch size = 200, which means the entire training set was used to 
update weights. In this approach, since the extracted features from 
ResNet-18 were discriminative, convergence occurred quickly, with the 
maximum number of epochs equal to 20. In Approach 2, we had 
mini_batch size = 4 because of the computational resources needed for 
input images. The maximum number of epochs was 350 since time was 
required for the model to learn feature extraction from scratch. 

Input training subjects were shuffled at the beginning of each epoch. 
With shuffling, models observe subjects in a different order, but the 
order of extracted features or images in each sequence was preserved. 
Data augmentation was used because the number of patients was not 
enough to train deep models. Data augmentation method is a process 
that increases data diversity to train models without gathering new data. 
In all models, random ± 5% scaling and ± 5 pixel translation was per-
formed on the training set only. Hence, in each iteration of the training 
process, coronal images were modified using data augmentation. For the 
RNN-based models and TCN model Approach 1, features were recalcu-
lated in ResNet-18, accordingly. In TCN Approach 2, augmented images 
were directly used for training. Consequently, in every epoch, the 
models observed slightly modified images or features in a different 
order. 

As previously discussed, a ResNet-18 was used to extract features for 
recurrent models (LSTM, BiLSTM and GRU) and Approach 1 of the TCN 
model. Fig. 5(a) shows 24 MRI coronal slices of one subject, and Fig. 5(b) 
shows feature maps of the first convolutional layer of ResNet-18 for a 
mid-coronal MRI slice. Fig. 6 shows the 64 filters of the first convolu-
tional layer of this model. ResNet-18 delivered a vector with 512 ele-
ments for each MRI slice extracted immediately before its fully 
connected layer. To obtain insights from the extracted features, feature 
maps of the mid-coronal slice of all AD subjects in our dataset are shown 
in Fig. 7. The bright pixels refer to activated neurons and each activated 
neuron reflects a single feature for the input image. As shown in the 

magnified part of Fig. 7, most AD subjects activate particular neurons in 
ResNet-18. The responsibility of sequence-based models in this study is 
to understand the relationship between the activated neurons of one 
subject (24 vectors, each with 512 elements) to determine whether the 
patient suffers from AD. 

We wanted to determine whether sequence-based deep models can 
improve the classification rate of 2D CNNs. Therefore, to calculate the 
accuracy, the 2D CNN models discussed in the literature were adjusted; a 
fully connected layer of two outputs (for AD vs. NC) with a weight/bias 
learning rate factor equal to 0.003 replaced the last fully connected 
layer. The learning rate of all other layers was equal to 0.0003. Setting a 
higher learning rate for the new fully connected layer enabled faster 
training than that of previous layers, which were trained on MNIST (for 
LeNet-5) or ImageNet. Other training parameters included L2 regular-
isation of 0.0005 and a mini-batch size of 64. The optimiser was SGD, 
with a momentum of 0.9. The same dataset partitions with sequence- 
based models and the same augmentation transforms (random ± 5% 
scaling and ± 5 pixel translation) were performed during training. The 
maximum number of epochs was 100; to avoid overfitting, early stop-
ping was considered to stop the training process if validation accuracy 
did not improve after 20 consecutive epochs. The same training pa-
rameters were used for all 2D/3D CNNs; however, a mini-batch size of 8 
was used for 3D CNNs because of the available computational resources. 
To create 3D CNNs, 2D filters of 2D CNN models were expanded to have 
3D filters. The number of learnable parameters increased because of the 
extension of filters’ dimensions. Any other layers in the structure of CNN 
were adjusted according to the new filters. Each 2D CNN model made a 
slice-based decision for each MRI coronal slice and delivered a single 
decision for each subject, with a majority voting strategy. For 3D CNNs, 
only one decision was made for each subject. 

The choice of a dataset may significantly affect the results of different 
models found in the literature. Given the diverse datasets used and the 
different number of subjects, or even dissimilar subjects, it is unrea-
sonable to compare various reported results. Even for studies on iden-
tical datasets, with matching subject counts and subject number 
identification codes, reported results are still incomparable because re-
searchers might have used a different portion of subjects in the training 
and test sets. In a recently conducted systematic literature review on AD 
detection using deep learning [6], a total of 114 papers in this field of 
research were evaluated. As part of the literature review, the reported 
accuracy and the utilised dataset of each method is presented in the 
paper’s Appendix4. 

Fig. 5. (a) 24 MRI coronal slices of one subject, (b) Feature maps of the first convolutional layer of ResNet-18 for a mid-coronal MRI slice.  
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In this study, several models from the literature were implemented to 
enable a fair comparison. The number of learnable parameters for each 
implemented model is listed in Table 2, together with other specifica-
tions, such as the depth and number of layers. The large number of 
learnable parameters associated with the depth and number of fully 
connected layers could affect overfitting significantly. After repeating 

several experiments, the highest accuracies of various CNNs reported in 
the literature, with or without transfer learning, on our selected datasets 
(AD vs. NC) and under the training conditions described earlier, are 
shown in Table 3. Xavier’s initialisation method [50] was used to ini-
tialise our CNN models, while training from scratch. In this table, ac-
curacy refers to the percentage of correctly classified test subjects. 

Fig. 6. The 64 filters of the first convolutional layer of ResNet-18.  

Fig. 7. Feature vectors of the mid-coronal slice of all AD subjects in our dataset.  
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Sensitivity refers to the percentage of evaluated test subjects suffering 
from AD who were correctly classified as such, while specificity is the 
percentage of evaluated healthy test subjects correctly classified as 
healthy. The ResNet-18 model achieved 82% accuracy, 84% sensitivity 
and 80% specificity on our dataset. Inspired by the novel concept of 
shortcut connections in ResNet models to avoid the vanishing gradient 
problem, ResNet-18 was used to extract features for our proposed 
sequence-based models. The reported accuracies in Table 3 for 3D CNNs 
confirm the overfitting issue caused by a large number of learnable 
parameters. 

The performances of our proposed sequence-based models on the 
same dataset are listed in Table 4. In ResNet-18 + LSTM, ResNet-18 +
BiLSTM, ResNet-18 + GRU and ResNet-18 + TCN, the idea was to use a 
sequence-based model on top of ResNet-18 to improve the accuracy of 
AD detection. Therefore, instead of having ResNet-18 to make a slice- 
based decision for each MRI coronal slice, extracted features were 
used to train the sequence-based models. Thus, each sequence-based 
model received a sequence of features corresponding to a sequence of 
MRI coronal slices of one subject. The sequence-based models consider 
the extracted features and identify relationships between the sequence 

of features. 
Conversely, TCNs can also be practical without the need for an 

interface to extract features. They can extract features from MRI coronal 
slices and simultaneously determine their relationships. As shown in 
Table 4, sequence-based models can improve the accuracy of AD 
detection. TCN with 4 residual blocks in Approach 2, ResNet-18 + TCN 
with 3 residual blocks in Approach 1 and ResNet-18 + LSTM achieved 
greater accuracy than ResNet-18 itself. However, the results for ResNet- 
18 + BiLSTM show that adding a sequence-based network for inde-
pendently extracted features sometimes led to ambiguities in the 
sequence-based classification. 

For a sequence of 2D MRI slices in RNN-based models, each LSTM 
cell preserves only the past images’ information because the only inputs 
it has observed are from the past. Every learnable parameter in an LSTM 
cell is updated according to the current and previous images in a 
sequence of MRI slices. In contrast, the learning algorithm of BiLSTMs is 
fed with MRI slices once from the beginning to the end and once from 
the end to the beginning. Hence, every learnable parameter in a BiLSTM 
cell is updated according to the current, previous and future images in a 
sequence of MRI slices. The mechanism of the other RNN model, GRU, is 
similar to that of LSTM, with a simpler structure and faster training. The 
learnable parameters in LSTM, BiLSTM and GRU cells control the flow of 
information from MRI to the models—information that should be 
memorised or forgotten. There are debates over the performance of each 
type of RNN model for different applications in the literature. Our results 
show that, for AD detection using features extracted by ResNet-18, the 
LSTM model yields a better classification performance than BiLSTM and 
GRU. 

In TCN Approach 1, features were extracted by ResNet-18 and the 
TCN model was used to understand the relationships between extracted 
features. Using two residual blocks limited the size of the input sequence 
and forced us to remove some feature vectors from our sequence of 
features from an MRI scan. Using three residual blocks forced us to pad 
vectors with zeros as their elements. In Approach 2, feature extraction 

Table 2 
CNN models implemented in our study.  

Network Depth #Layers #Convolutional layers #FCs #Parameters (Millions) 

2D LeNet-5 5 16 3 2 0.062 
AlexNet 8 25 5 3 61.0 
VGG-16 16 41 13 3 138 
SqueezeNet 18 68 27 0 1.24 
ResNet-18 18 71 20 1 11.7 
VGG-19 19 47 16 3 144 
GoogLeNet 22 144 58 1 7.0 
Inceptionv3 48 315 94 1 23.9 
ResNet-50 50 177 53 1 25.6 
ResNet-101 101 347 104 1 44.6 

3D LeNet-5 5 16 3 2 0.26 
ResNet-18 18 71 20 1 34 
ResNet-50 50 177 53 1 48  

Table 3 
Accuracies of the CNNs discussed in the literature on our selected dataset (AD vs. 
NC).  

Model Results (%) 

Accuracy Sensitivity Specificity 

Training from 
Scratch 

LeNet-5 [32,52–54] 77 96 58 
AlexNet [55] 78 86 70 
VGGNet-16 79 78 80 
SqueezeNet 78 76 80 
ResNet-18 80 78 82 
VGGNet-19 80 78 82 
GoogLeNet [27,32, 
54,55] 

76 88 64 

Inceptionv3 [36] 77 82 72 
ResNet-50 81 80 82 
ResNet-101 78 76 80 
3D LeNet-5 81 78 85 
3D ResNet-18 69 72 66 
3D ResNet-50 63 68 58 

Transfer 
Learning 

LeNet-5 [36] 78 96 60 
AlexNet [36] 80 86 74 
VGGNet-16 [26,33, 
34] 

81 80 82 

SqueezeNet 81 82 80 
ResNet-18 [28] 82 84 80 
VGGNet-19 81 78 85 
GoogLeNet [29,31] 81 86 76 
Inceptionv3 [30,33, 
56] 

78 80 76 

ResNet-50 81 80 82 
ResNet-101 79 76 82  

Table 4 
Accuracies of the proposed sequence-based deep models on our selected dataset 
(AD vs. NC).  

Model Results (%) 

Accuracy Sensitivity Specificity  

ResNet-18 82 84 80  
ResNet-18 + LSTM 84 80 88  
ResNet-18 + BiLSTM 79 82 76  
ResNet-18 + GRU 82 70 94 

Approach 
1 

ResNet-18 + TCN (with 2 
residual blocks) 

82 72 92 

ResNet-18 + TCN (with 3 
residual blocks) 

88 94 82 

Approach 
2 

TCN (with 4 residual blocks) 91 94 88 
TCN (with 5 residual blocks) 78 82 74  
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and classification were directly conducted by the TCN model. Using four 
residual blocks limited the size of the input sequence and required 
removal of some MRI image slices from an MRI scan. 

Similarly, using five residual blocks required padding image slices 
with zeros as pixel values. Comparing Approaches 1 and 2, the direct 
feature extraction and classification performed by the TCN in Approach 2 
achieved higher accuracy of AD detection. Additionally, this special 
feature of TCNs provided an advantage over RNNs for image-based 
tasks. In our experiments, a TCN with four residual blocks achieved 
the best classification performance of the tested models, with 91% ac-
curacy, 94% sensitivity and 88% specificity. For generalisation pur-
poses, 5-fold cross-validation was also applied, which resulted in 
91.78% accuracy, 91.56% sensitivity and 92% specificity. These results 
for AD detection are approximately 10% better than those obtained 
using ResNet-18. 

Employing 2D MRI slices as the input as an alternative to entire 3D 
MRI scans avoids confrontation of millions of learnable parameters and 
leaves more simplified networks, at the cost of losing spatial dependency 
between neighbouring slices. In contrast, voxel-based methods can 
obtain all 3D information in a single brain scan. However, voxel-based 
methods involve high computational load and high feature dimension-
ality. To solve the high feature dimensionality, voxel preselection 
techniques may be desired. This paper presents the idea of deep 
sequence-based models. They benefit from transfer learning, maintain 
spatial dependencies in adjacent slices and avoid confrontation of mil-
lions of parameters during training. In 2D CNN + RNN and 2D CNN +
TCN, feature extraction and classification are not performed simulta-
neously, and TCN Approach 2 cannot benefit from transfer learning using 
2D datasets. A summary of the strengths and limitations of all three 
input data management methods is provided in Table 5. 

5. Conclusion 

2D CNNs can extract features from MRI slices and directly feed them 
into a fully connected layer and a Softmax layer for AD detection. On the 
other hand, 3D CNNs extract features from the whole MRI volumes for 
classification. The first scenario neglects temporal dependencies for the 
sequence of 2D MRI slices from a 3D MRI volume of a subject. The 
second scenario has many learnable parameters to train. In this paper, 
deep sequence-based models were proposed for AD detection. In these 
models, a sequence of features extracted by a pre-trained ResNet-18 
from MRI scans was used to train a TCN and different RNNs, such as the 
LSTM, BiLSTM and GRU. Sequence-based models can capture features 
extracted from 2D MRI slices of one subject and understand the rela-
tionship between a sequence of features related to that subject. 

LSTM, BiLSTM and GRU models are revised versions of RNNs with 
more complex structures, including gates. Gates can regulate the flow of 
information passing through the sequence chain and remove or add past 
information from the network. Among the three types of RNNs 

compared in this study, ResNet-18 + LSTM achieved the best classifi-
cation accuracy for AD detection, with 84% accuracy, 80% sensitivity 
and 88% specificity. 

In contrast to RNN-based models and TCN Approach 1, which needed 
features extracted from ResNet-18, TCN models can merge the feature 
extraction and classification stages into a single step. TCNs can under-
stand and model spatial dependencies of an MRI slice and temporal 
dependencies of adjacent slices simultaneously using convolutional fil-
ters. To the best of our knowledge, this is the first time TCNs have been 
applied to 3D medical data (spatial data) instead of temporal data. In 
this study, TCNs performed better than slice-based methods (using 2D 
CNNs), voxel-based methods (using 3D CNNs) and RNN-based methods, 
with 91.78% accuracy, 91.56% sensitivity and 92% specificity. 

Of the three approaches considered in this study, sequence-based 
models showed the best AD detection performance, compared to slice- 
based and voxel-based approaches. Slice-based approaches do not 
need to deal with a huge number of parameters during training, are 
more simplified networks, and can benefit from transfer learning; 
however, the spatial dependencies in adjacent image slices are lost. 
Voxel-based approaches can capture the 3D information of a brain scan, 
but involve high computation loads and high feature dimensions. Also, 
they cannot benefit from transfer learning. Our proposed sequence- 
based approaches avoid the need to deal with a huge number of pa-
rameters during training, similar to slice-based approaches. The pro-
posed 2D CNN + RNN and 2D CNN + TCN combinations can benefit 
from transfer learning using 2D datasets, although feature extraction 
and classification are not performed simultaneously. On the other hand, 
TCN Approach 2 keeps spatial dependencies in adjacent slices but cannot 
benefit from transfer learning using 2D datasets. 

The advantages of employing TCNs include greater control of the 
receptive field size and improved parallel processing. The parameter 
settings for TCNs depend mainly on the receptive field applied to input 
data. The receptive field can be made larger by increasing the number of 
blocks than the maximum sequence length, and padding will be 
required. Otherwise, older histories will be sacrificed. Although TCNs 
are similar to 3D CNNs, they require less computational resources for 
training and have a selectable receptive field size. 

The combined models in this paper can be applied to any other 
image-based tasks (e.g. video processing). For example, a CNN model 
can extract features from video frames and shape a feature vector. Then, 
the RNN or TCN can perform sequence-based classification. Otherwise, 
similar to the TCN Approach 2 in this paper, a video can be fully pro-
cessed by one TCN model. In our experiments, we initialised TCN 
weights with random Gaussian distribution. Future studies can improve 
the TCN structure using weights delivered by pre-trained CNNs. 
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Table 5 
A summary of the implemented input data management methods for AD detection.  

Methods Strengths Limitations 

Sliced-based • Prevents facing millions of parameters during training and provides more simplified 
networks 

• Loses spatial dependencies in adjacent image slices 

• Can benefit from transfer learning 
Voxel-based • Can capture the 3D information of a brain scan • Involves high computation load and high feature dimensionality 

• Cannot benefit from transfer learning 
Sequence- 

based 
• Prevents facing millions of parameters during training and provides more simplified 
networks 

• Feature extraction and classification are not performed 
simultaneouslya 

• Cannot benefit from transfer learning using 2D datasetsb • Can benefit from transfer learning using 2D datasetsa 

• Keeps spatial dependencies in adjacent slicesb  

a Only 2D CNN + RNN and 2D CNN + TCN.  

b Only TCN Approach 2.  
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